
Vibrational Energy Relaxation in Liquid Oxygen from a Semiclassical Molecular Dynamics
Simulation

Qiang Shi and Eitan Geva*
Department of Chemistry, UniVersity of Michigan, Ann Arbor, Michigan 48109-1055

ReceiVed: April 24, 2003; In Final Form: August 6, 2003

The semiclassical theory of vibrational energy relaxation (VER) developed in the preceding paper is extended
to the case of molecular liquids, and used for calculating the VER rate constant in neat liquid oxygen at 77
K. We employ a semiclassical approximation of the quantum-mechanical force-force correlation function
(FFCF), which puts it in terms of the Wigner transforms of the force and the product of the Boltzmann
operator and the force. The multidimensional Wigner integrals are performed via a novel implementation of
the local harmonic approximation (LHA). The methodology is extended to include centrifugal forces, and
effective ways are developed in order to make it applicable to molecular liquids. The fact that VER of high-
frequency solutes is dominated by the solvent molecules in their close vicinity suggests that the semiclassical
treatment is restricted to the small cluster of molecules around the relaxing molecule. The rest of the molecules
are frozen and serve as a static cage that keeps the cluster from falling apart. The method is applied to the
challenging problem of calculating the extremely slow (k0r1 ) 395 s-1) and highly quantum-mechanical
(pω/kBT ) 29) VER rate constant in neat liquid oxygen at 77 K. The results are found to be in very good
quantitative agreement with experiment and suggest that this semiclassical approximation can capture the 4
orders of magnitude quantum enhancement of the experimentally observed VER rate constant over the
corresponding classical prediction. As for the simpler models considered in the preceding paper, we find that
VER in liquid oxygen is dominated by a purely quantum mechanical term, which vanishes at the classical
limit. These results further establish the semiclassical method as an attractive alternative to the commonly
used approach which is based on ad hoc quantum correction factors.

I. Introduction

The problem of vibrational energy relaxation (VER) in liquid
solutions has received much attention over the last few
decades.1-39 The VER rate provides a sensitive probe of
intramolecular dynamics and solute-solvent interactions, which
are known to have a crucial impact on other important
properties, such as chemical reactivity, solvation dynamics, and
transport coefficients. The simulation of VER in liquid solutions
has presented theoretical chemistry with an ongoing challenge
due to the high frequency of most molecular vibrations (in the
sense thatpω/kBT . 1). One implication of the high frequency
is that VER is often found to be slow, due to the low density of
accepting modes with matching frequencies, and therefore
cannot be obtained directly from nonequilibrium MD simula-
tions. This problem is usually circumvented by resorting to the
Landau-Teller (LT) formula, which gives the VER rate constant
in terms of the Fourier transform (FT), at the vibrational
frequency, of a certain short-lived force-force correlation
function (FFCF), which can be calculated from equilibrium MD
simulations with a rigid solute. Another difficulty has to do with
the fact that extracting the very small high-frequency Fourier
components of the FFCF can become extremely difficult due
to statistical noise accompanying all real-life simulations. This
difficulty is often dealt with by using an extrapolation of the
exponential gap law, which usually emerges at low frequencies,
to much higher frequencies.40,41 An alternative, yet similar,
approach combines a short time expansion of the FFCF with a

parametrized ansatz that exhibits an exponential gap law
behavior at high frequencies, whose FT can be calculated
analytically.42-50

Another fundamental difficulty imposed by the fact thatpω/
kBT . 1, is that thequantum-mechanicalFFCF, rather than
theclassicalFFCF, should be used in the LT formula. The exact
calculation of real-time quantum-mechanical correlation func-
tions for general many-body systems remains far beyond the
reach of currently available computer resources, due to the
exponential scaling of the computational effort with the number
of degrees of freedom (DOF).51 The most popular approach for
dealing with this difficulty is to first evaluate the FT of the
classical FFCF, and then multiply the result by a frequency-
dependentquantum correction factor(QCF).1,52-67 Various
approximate QCFs have been proposed in the literature.
Unfortunately, estimates obtained from different QCFs can differ
by orders of magnitude, and particularly so when high-frequency
vibrations are involved.

In the preceding paper,124 which will be referred to below as
paper I, we developed a new method for calculating the
quantum-mechanical FFCF which is based on the linearized-
semiclassical initial-value-representation (LSC-IVR) approxi-
mation. The LSC-IVR approximation has been recently derived
by Miller and co-workers68-74 via linearizing the forward-
backward action in the semiclassical51,68,69,74-99 initial value
representation86-89,98,100-107 expression for a real-time quantum-
mechanical correlation function, with respect to the difference
between the forward and backward trajectories. We have
recently shown that the very same approximation can also be* Corresponding author. E-mail: eitan@umich.edu.
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derived by linearizing theexactreal-time path integral expres-
sion for the correlation function, without explicitly invoking
the semiclassical approximation.108

The LSC-IVR approximation for a general real-time cor-
relation function is given by [here, as in the rest of this paper,
we use boldface symbols for vectors, and capped symbols (e.g.
Â) for operators]:

where,f is the number of DOF,q0 ) (q0
(1), ..., q0

(f)) andp0 )
(p0

(1), ..., p0
(f)) are the corresponding coordinates and momenta

is the Wigner transform ofÂ,109 and qt
(Cl) ) qt

(Cl)(q0,p0) and
pt

(Cl) ) pt
(Cl)(q0,p0) are propagated classically with the initial

conditionsq0 andp0. The major advantage of LSC-IVR has to
do with its computational feasibility (although computing the
Wigner transform in systems with many DOF is not trivial69).
The LSC-IVR approximation has the additional attractive
features of being exact att ) 0, at the classical limit, and for
harmonic systems. Its main disadvantage has to do with the
fact that it can only capture quantum dynamical effects that arise
from short-time interferences between the various trajectories
(the longer time dynamics is purely classical).70 However, it
should be noted that generally in condensed phase, and
particularly in the case of high-frequency VER, the quantities
of interest are often dominated by the short-time dynamics of
the correlation functions.

The major difficulty involved in using eq 1 for calculating
the FFCF has to do with that fact that the calculation of the
multidimensional Wigner phase-space integral, via conventional
Monte Carlo (MC) techniques, is made extremely difficult by
the oscillatory phase factor, e-iP0∆/p, in the integrand of eq 2.
This problem was dealt with in paper I by using a novel
implementation of the local harmonic approximation (LHA),
which allowed for an analytical evaluation of the Wigner
integral. The emerging method, which was designated LHA-
LSC-IVR, has been tested in paper I on several model
systems: (1) a vibrational mode coupled to a harmonic bath,
with the coupling exponential in the bath coordinates; (2) a
diatomic molecule coupled to a short chain of helium atoms
that interact via Lennard-Jones (LJ) pair potentials; (3) A
spherically symmetric diatomic molecule (a “breathing sphere”),
in a two-dimensional monatomic LJ liquid. Very good agree-
ment with the exact results, or their best estimates, has been
found in all cases. It was also found in all cases that the quantum
enhancement of the VER rate constant is dominated by a purely
quantum mechanical term which is not accounted for in classical
MD simulations.

In the present paper, we report on the first application of the
LHA-LSC-IVR method to a truly molecular liquid in 3D. The
more demanding nature of this problem required that the method
is extended to cases involving centrifugal forces, as well as the
development of effective ways for dealing with constrained
systems and thousands of DOF. The resulting modified and
extended LHA-LSC-IVR method is specialized for calculating
the extremely slow (k0r1 ) 395 s-1) and highly quantum-
mechanical (pω/kBT ) 29) VER rate constant in neat liquid
oxygen at 77 K. It should be noted that calculation of the VER
rate constant in neat liquid oxygen, which has been measured

some time ago at temperatures between 60K to 90K and under
atmospheric pressure,15 has proved to be extremely challenging
in the past. A prediction based on purely classical MD
simulations has been found to be smaller by 4 orders of
magnitude relative to the corresponding experimental value, and
no unique prediction can be obtained based on the QCF
approach (see Table 1).43,59

The structure of the remainder of this paper is as follows.
The model Hamiltonian of liquid oxygen and basic VER theory
are outlined in section 2. The semiclassical theory of VER is
described in section 3. The simulation techniques used for
calculating the FFCF are described in section 4. The results for
neat liquid oxygen at 77 K are reported and analyzed in section
5. We conclude in section 6 with a summary of the main results
and some discussion on their significance.

II. Model and Formalism

Following Everitt et al. in ref 59, we consider a single
vibrating oxygen molecule solute in a solvent that consists of
Nm rigid oxygen molecules. The overall Hamiltonian is

where

and

T̂(q̂) is the total rotational and translational kinetic energy, with
Mm the molecularmass andP̂CM

(0) , L̂(0) and I(0)(q̂) ) µ(re + q̂)2

the center of mass momentum, angular momentum, and moment
of inertia of the relaxing molecule, respectively.{P̂CM

(i) }, {L̂(i)}
andI ) µre

2 are the center of mass momenta, angular momenta,
and moment of inertia of the rest of the molecules, respectively.
Û(q̂) is the overall potential energy, which is given as a sum of
site-site Lennard-Jones (LJ) pair potentials

with ε/kB ) 48.0 K andσ ) 3.006 Å.59,110Each O2 molecule is
described by two sites, one for each of the atoms, with an

Tr(e-âĤeiĤt/pB̂e-iĤt/pÂ) ≈
1

(2πp)f ∫ dq0 ∫ dp0(Âe-âĤ)W(q0,p0)BW(qt
(Cl),pt

(Cl)), (1)

AW(q0,p0) ) ∫d∆ e-ip0∆/p〈q0 + ∆/2| Â|q0 - ∆/2〉 (2)

TABLE 1: k0r1 for Near-Liquid O 2 at 77 Ka

k0r1(s-1)

classical 0.031( 0.0045
harmonic 5.2( 0.3
Egelstaff 1900( 300
mixed harmonic-Egelstaff 1000( 180
LHA-LSC-IVR 1600( 280
experiment 395

a The error in the LSC-IVR result is based on an estimated 15%
error in the extrapolation.

Ĥ ) Ĥq + T̂(q̂) + Û(q̂) (3)

Ĥq ) p̂2

2µ
+ 1

2
µω0

2q̂2, (4)

T(q) )
(P̂CM

(0) )2

2Mm

+
(L̂(0))2

2I(0)(q̂)
+ ∑

i)1

Nm ((P̂CM
(i) )2

2Mm

+
(L̂(i))2

2I ) (5)

Û(q̂) ) ∑
i)1

Nm

∑
j<i

∑
R,â

φ[|r̂(iR) - r̂(jâ)|] +

∑
i)1

Nm

∑
R,â

φ[|r̂(iR) - r̂(0â) - qû(0â)/2|] (6)

φ(r) ) 4ε[(σr )12
- (σr )6] (7)
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equilibrium internuclear distance of 1.208 Å.59,110 r̂(iR) corre-
sponds to the position of siteR on theith molecule, andû(0â)

corresponds to a unit vector pointing from the center of mass
of the relaxing molecule to itsâ site. The model used in ref 59
also included polarizable (q-dependent)σ andε. However, the
effect of thisq-dependence on the resulting VER rate constant
was found to be rather small. We therefore chose to neglect it
in the treatment reported below.

The force is obtained by linearizing the HamiltonianT(q) +
U(q) with respect toq̂:

Here F̂ ) F̂T + F̂U, with the centrifugal force,111,112 F̂T, and
potential force, F̂U,113-115 given by

and

respectively. After the linearization, the overall Hamiltonian is
given by

where

and

The experimentally measured15 transition rate constant from
the first excited vibrational state to the ground state of the
relaxing O2 molecule is given by the LT formula (cf. paper I):
9,116

where

and

Here, 〈Â〉0 ) Tr[e-âĤbÂ]/Zb, Zb ) Tr[e-âĤb], δF̂ ) F̂ - 〈F̂〉0,
and

Equation 14 gives the VER rate constant,k0r1, in terms of the
FT, at the vibrational frequency,ω0, of the FFCF,C(t).

It should be noted that althoughC(t) is complex, i.e.,C(t) )
CR(t) + iCI(t) with CR(t) andCI(t) the real and imaginary parts,
respectively, its FT,C̃(ω), is real. Taking advantage of the
general symmetries satisfied byC(t), namelyC(-t) ) C*( t)
and C̃(-ω) ) e-âpωC̃(ω), make it possible to computeC̃(ω)
from eitherC(t), CI(t), or CR(t):

III. A Semiclassical Formula for the VER Rate Constant

For the sake of developing the LSC-IVR approximation for
the FFCF, eq 16, it is convenient to describe the system in terms
of the atomic space-fixed Cartesian coordinates and adjoint
momenta. To this end, letQ̂ ) (Q̂(1), ..., Q̂(N)) andP̂ ) (P̂(1), ...,
P̂(N)) be the Cartesian coordinates and momenta of theatoms,
with N ) 6(Nm + 1). We may therefore rewrite the bath
Hamiltonian in eq 12 in the following way:

whereM ) Mm/2 is the atomic mass of oxygen, andV(Q̂) )
U(0). It should also be noted that the systems can only access
nuclear configurations that satisfy the constraint of fixed
interatomic distance in each diatom. Finally, we need to express
the forces in eqs 9 and 10 in terms of the atomic coordinates
and momenta. The potential force,FU, is already given in terms
of the atomic coordinates, through the site-site interaction terms
[cf. eq 10]. The centrifugal force can be written in terms of the
atomic momenta that correspond to the relaxing molecule:

where, for example,P̂R,x
(0) is thex component of the momentum

of the atom in theR site of the relaxing molecule.
The LSC-IVR approximation, eq 1, of the quantum-

mechanical FFCF, eq 16, assumes the following form:

Here

and

A direct application of eq 21 to an anharmonic many-body
system would require an exact numerical calculation of the

T̂(q̂) + Û(q̂) = T̂(0) + Û(0) - q̂F̂ (8)

F̂T ) -
T̂(q)
∂q |

q)0
)

(L̂(0))2

I(0)re

(9)

F̂U ) -
Û(q)

∂q
|
q)0

)

1

2
∑
i)1

Nm

∑
R,â

φ′(| r̂(iR) - r̂(0â)|)
(r̂(iR) - r̂(0â))·û(0â)

| r̂(iR) - r̂(0â)|
(10)

Ĥ ) Ĥq + Ĥb + Ĥbs (11)

Ĥb ) T̂(0) + Û(0) )∑
i)0

Nm ((P̂CM
(i) )2

2Mm

+
(L̂(i))2

2I ) +

∑
i)0

Nm

∑
j<i

∑
R,â

φ(| r̂(iR) - r̂(0â)|) , (12)

Ĥbs ) - q̂F̂ ) - q̂(F̂T + F̂U) (13)

k0r1 ) 1
2µpω0

C̃(ω0) (14)

C̃(ω0) ) ∫-∞

∞
dt eiω0tC(t), (15)

C(t) ) 〈δF̂0(t)δF̂〉0 ) 1
Zb

Tr[e-âĤbeiĤbt/pδF̂e-iĤbt/pδF̂] (16)

δF̂0(t) ) eiĤbt/pδF̂e-iĤbt/p (17)

C̃(ω) ) 4

1 + e-âpω ∫0

∞
dt cos(ωt)CR(t) )

- 4

1 - e-âpω ∫0

∞
dt sin(ωt)CI(t) (18)

Ĥb ) ∑
i)1

N (P̂(i))2

2M
+ V̂(Q̂), (19)

F̂T ) 1

2I(0)
{(P̂R,x

(0) - P̂â,x
(0))2 + (P̂R,y

(0) - P̂â,y
(0))2 + (P̂R,y

(0) - P̂â,y
(0))2}

(20)

C(t) ≈
1
Zb

1

(2πp)N ∫ dQ0 ∫ dP0[δF̂e-âĤb]W (Q0,P0)δFW(Qt
(Cl), Pt

(Cl))

(21)

δFW(Qt
(Cl),Pt

(Cl)) ) δFU(Qt
(Cl)) + δFT(Pt

(Cl)), (22)

[δF̂e-âĤb]W(Q0,P0) )

∫ d∆e-iP0∆/p〈Q0 + ∆/2|(δF̂T + δF̂U)e-âĤb|Q0 - ∆/2〉 (23)
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multidimensional Wigner phase-space integral in eq 23. Un-
fortunately, it is extremely difficult to perform this calculation
via conventional Monte Carlo (MC) techniques, due to the
oscillatory phase factor, e-iP0∆/p, in the integrand. One can
overcome this obstacle by employing the LHA in order to
perform the corresponding approximate Wigner integral analyti-
cally. The LHA has been applied to the potential force
contribution to the Wigner integral of eq 23, [δF̂Ue-âĤb]W, in
paper I, and the result obtained there can be immediately adopted
for the application considered here (see below). However, the
evaluation of the centrifugal force contribution, [δF̂Te-âĤb]W,
requires the extension of the LHA-based approach to momenta-
dependent forces. Such an extension is presented below.

As in the case of the potential force, we start by introducing
a quadratic expansion of the potential energy of the bath,V(Q),
aroundQ0, followed by a transformation of the bath Hamilto-
nian, Ĥb, to the normal mode representation. This yields the
following LHA of the quantum-mechanical bath Hamiltonian
aroundQ ) Q0:

where

are the mass-weighted normal mode coordinates and momenta,
respectively,{(Ω(k))2} are the eigenvalues of the corresponding
Hessian matrix, and

We next rewrite the contribution of the centrifugal force to
the Wigner transform in eq 23 in the following form:

We refrain from applying the LHA to the〈Q0|e-âĤb|Q0〉 factor
preceding the integral. However, we do apply the LHA of eq
24 in the evaluation of the ratio,〈Q0 + ∆/2|δFT(P̂)e-âĤb|Q0 -
∆/2〉/〈Q0|e-âĤb|Q0〉. To this end, we expressF̂T in eq 20 in terms
of the normal mode momenta

replaceĤb by its LHA, eq 24, and use the following identities
(the proportionality constantsC0, C1, andC2 are independent
of Q1 andQ2)

in order to explicitly evaluate〈Q0 + ∆/2|δFT(P̂)e-âĤb|Q0 -
∆/2〉/〈Q0| e-âĤb|Q0〉. This is followed by changing the integration
variables from{∆(k)} to {∆n

(k)}, where

and performing the Gaussian integrals over{∆n
(k)} analytically.

This procedure leads to the following result:

where

and

The contribution of the potential force to the Wigner
transform in eq 23, within the LHA, has been worked out in
paper I and is given by

where

Ĥb ≈ ∑
k)1

N 1

2
(P̂n

(k))2 + V(Q0) + ∑
k)1

N

Gn
(k) Q̂n

(k) +

1

2
∑
k)1

N

(Ω(k))2[Q̂n
(k)]2 (24)

Qn
(k) ) ∑

l)1

N

Tl,kxM[Q(l) - Q0
(l)] , P̂n

(k)(Q0) ) ∑
l)1

N

Tl,kM
-1/2P̂(l)

(25)

Gn
(k)(Q0) ) ∑

l)1

N

Tl,kM
-1/2 ∂V

∂Q(l)|
Q)Q0

. (26)

[δF̂Te-âĤb]W ) 〈Q0|e-âĤb|Q0〉 ∫ d∆e-iP0∆/p ×
〈Q0 + ∆/2|δFT(P̂)e-âĤb|Q0 - ∆/2〉

〈Q0|e-âĤb|Q0〉
(27)

F̂T ) ∑
k,l)1

N

Ck,lP̂n
(k) P̂n

(l), (28)

〈Q1|e-â[P̂2/2+Ω2Q̂2/2]|Q2〉 ) C0 exp{- Ω
2p

1
sinh(âpΩ)

×

[cosh(âpΩ)(Q1
2 + Q2

2) - 2Q1Q2]},

〈Q1| P̂e-â[P̂2/2+Ω2Q̂2/2]|Q2〉 )

iC1Ω coth(âpΩ)(Q1 -
Q2

cosh(âpΩ)) ×

exp{-Ω
2p

1
sinh(âpΩ)

[cosh(âpΩ)(Q1
2 + Q2

2) - 2Q1Q2]},

〈Q1| P̂2e-â[P̂2/2+Ω2Q̂2/2]|Q2〉 )

C2[pΩ coth(âpΩ) - ω2 coth2(âpΩ)(Q1 -
Q2

cosh(âpΩ))2] )

exp{-Ω
2p

1
sinh(âpΩ)

[cosh(âpΩ)(Q1
2 + Q2

2) - 2Q1Q2]}
(29)

∆n
(k) ) ∑

k)1

N

Tl,kxM(l) ∆(l) (30)

[δF̂Te-âĤb]W ) 〈Q0|e-âĤb|Q0〉∏
j)1

N ( 4π

MR(j))1/2

exp[-
(Pn,0

(j) )2

p2R(j) ] ×

{δFT(Pn,0) + DT(Q0, Pn,0)} (31)

δFT(Pn,0) ) ∑
k,l)1

N

Ck,lPn,0
(k) Pn,0

(l) , (32)

DT(Q0, Pn,0) ) ∑
k)1

N

Ck,k

(Ω(k))2

2R(k)
+

i

p
∑
k,l)1

N

Ck,l[Gn
(k) Pn,0

(l)

R(k)
+

Gn
(l) Pn,0

(k)

R(l) ] −
1

p2
∑
k,l)1

N

Ck,l

Gn
(k) Gn

(l)

R(k)R(l)
, (33)

R(j) ) Ω(j)

p
coth [âpΩ(j)/2]. (34)

[δF̂Ue-âĤb]W )

〈Q0|e-âĤb|Q0〉 ∏
j)1

N ( 4π

MR(j))1/2

exp[-
(Pn,0

(j) )2

p2R(j) ] ×

[δFU(Q0) + DU(Q0,Pn,0)], (35)
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and

Substituting eqs 31 and 35 into eq 21 and changing the
integration variables from{P0

(k)} to {Pn,0
(k)} then lead to the final

form of our approximate expression for the quantum-mechanical
FFCF:

The classical limit of the approximate FFCF in eq 39
coincides with the exact classical FFCF. To see this, note that
in the classical limit: (1)〈Q0|e-âĤb|Q0〉/Zb f e-V(Q0)/∫dQ0e-V(Q0);
(2) R(j) f 2/âp2 sinceâpΩ(j) , 1, such that∑j)1

N (Pn,0
(j) )2/p2R(j)

f â∑j)1
N (Pn,0

(j) )2/2 f â∑j)1
N (P0

(j))2/2M(j); (3) DT(Q0,Pn,0) andDU-
(Q0,Pn,0), eqs 33 and 36, respectively, vanish asp f 0, and
one is left with averaging over the time correlation of the
classical forces, [δFU(Q0) + δFT(P0)][δFU(Qt

(Cl)) + δFT(
Pt

(Cl))]. It is also important to note that the approximate FFCF
satisfies the fundamental quantum-mechanical identityC(-t)
) C*(t), since its the real and imaginary parts are even and odd
functions ofPn,0, respectively (cf. paper I for a more detailed
discussion of this point). Finally, we note that whereas theFU-
FU term in eq 39 is exact att ) 0, as shown in paper I, this is
not the case for theFT-FT andFU-FT terms within the current
implementation of the LHA. Nevertheless, it should be noted
that as long as the LHA is valid, the values of theFT-FT and
FU-FT terms att ) 0 are expected to provide a reasonable
approximation for the exact quantum result.

IV. Simulation Techniques

The present section discusses the techniques employed for
numerically computingC(t) via eq 39. The first step of the
simulation involves sampling of the initial positions,Q0. The
latter is based on the probability density given by〈Q0| e-âĤb|Q0〉/
Zb, and can be performed via a PIMD or a PIMC simulation.
Discretization of the imaginary-time path using Cartesian
coordinates is not trivial in the case of rotational motion, due
to the fact that the “on-the-sphere” and “near-the-surface-of-
the-sphere” treatments are generally not equivalent.117However,
those treatments turn out to be equivalent in the case of a linear
rotor in 3D (cf. Chapter 8 of ref 117). The rotor’s rigidity can
be imposed as in standard classical MD simulations,118 by

keeping the distance between thejth beads in the isomorphic
cyclic polymer chains that represent theR and â sites of the
same molecule fixed throughout the PIMD or PIMC simulation.

A key step in computing the approximate FFCF, eq 39,
involves the calculation of the normal-mode frequencies and
coordinates that underlie the LHA. It is important to note that
the normal mode displacements should be consistent with the
fixed bond length constraint. A convenient way for accomplish-
ing this is by actually releasing the constraint at first and then
calculating the local normal modes in a system that consists of
flexiblediatomic molecules. More specifically, we introduce an
explicit intramolecular harmonic potential that allows the oxygen
molecules to vibrate. A sufficiently large vibrational frequency
would then give rise to normal-mode frequencies which are
much higher than, and well separated from, the frequencies of
the rest of the normal modes. The coordinates of these high
frequency normal modes correspond to displacements along the
internuclear axes. They violate the fixed bond length constraint
and are therefore discarded. The remaining normal modes, which
correspond to displacements that satisfy the constraint, are kept.
It should be emphasized that the molecules are allowed to vibrate
only for the sake of finding the normal modes, which is
necessary for sampling the initial momenta. Once the latter are
obtained, the rigidity constraint is reimposed throughout the
subsequent, purely classical, time evolution.

The major computational bottleneck is associated with the
high cost of repeatedly calculating the normal-mode frequencies
and coordinates of a system with thousands of DOF. However,
the effective number of DOF can be drastically reduced if one
takes advantage of the fact that the high-frequency FT of the
FFCF is dominated by the interaction of the relaxing molecule
with the molecules in its first few solvation shells.119,120Thus,
after sampling the initial positions via a PIMD or PIMC
simulation of the overall system (typically consisting of hundreds
of molecules in the simulation cell), we randomly select one
molecule to be the tagged molecule, and compute the FFCF
within a “cluster” that consists of the tagged molecule and a
relatively small subset of the molecules closest to it. While the
molecules inside the cluster are allowed to move in order to
calculate the FFCF, the rest of the molecules are kept frozen at
their initial positions and form a static cage that prevents the
cluster from falling apart. This procedure is repeated for each
sampled initial configuration of the overall system, and the actual
prediction for the FFCF consists of an average over many
different initial cluster-cage configurations.

A schematic view of the cluster-in-a-liquid (CIL) strategy
described above is shown in Figure 1. The following technical
points should be noted with regard to it.

•The oxygen molecules in the cluster are not equivalent.
Hence, one cannot enhance the efficiency of the computation
by considering all of the molecules as tagged, which is a
common practice when computing the FFCF in neat liquids via
classical MD simulations. However, this loss in computational
efficiency is compensated for by the reduced number of effective
DOF as well as by the fact that the true computational bottleneck
is associated with finding the normal modes.

• The FFCF involves the fluctuations of the instantaneous
force relative to its average value,δF ) F - 〈F〉0. 〈F〉0 is usually
obtained by averaging over time, which is identical to the
ensemble average. However, in our case, the force consists of
two contributions: one from the dynamical cluster molecules
and the other from the static cage molecules. Time-averaging
of the force exerted by the frozen cage molecules is obviously
impossible. Time-averaging of the force exerted by the cluster

DU(Q0,Pn,0) )

- i∑
k)1

N (F̃′U)kPn,0
(k)

pR(k)
+ ∑

k)1

N (F̃′′U)k,k

4R(k)
- ∑

k,l)1

N (F̃′′U)k,lPn,0
(k) Pn,0

(l)

2p2R(k)R(l)
, (36)
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N
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(F̃′′U)k,l ) ∑
i)1

N

∑
j)1

N

(M(i)M(j))-1/2Ti,lTj,k(F′′U)i,j. (37)
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∂FU
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∂

2FU

∂Q(k)
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Q)Q0

. (38)

C(t) ≈ ∫ dQ0

〈Q0|e-âĤb|Q0〉

Zb

∫ dPn,0∏
j)1

N ( 1

R(j)πp2)1/2

×

exp[-
(Pn,0

(j) )2

p2R(j) ][δFU(Q0) + δFT(Pn,0) + DU(Q0,Pn,0) +

DT(Q0,Pn,0)][δFU(Qt
(Cl)) + δFT(Pn,t

(Cl))]. (39)
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molecules is possible, but is generallydifferentfrom the cage-
free time-average, which coincide with the ensemble average.
We choose to define〈F〉0 as corresponding to the ensemble
average, which is the same as the cage-free time average. It
should be noted that this procedure ensures that the initial value
of the FFCF is identical to that in the cage-free case, but also
implies that the computed FFCF does not decay to zero.
However, the fact that the FFCF does not decay to zero does
not affect its high-frequency FT and our predictions for the VER
rate constant.

The validity of the CIL strategy has been tested within the
context of aclassicalMD simulation of liquid O2. In Figure 2,
we compare the exact classical FFCF, obtained from a classical
MD simulation of 500 oxygen molecules in a simulation cell
with periodic boundary conditions (solid line), with the predic-
tion obtained for a cluster consisting of the tagged molecule
and 29 of its nearest neighbors, which is surrounded by a cage
consisting of additional 60 molecules (dashed line). As expected,
the CIL-based FFCF coincides with the exact FFCF at short
times, and is different from it at longer times. However, the
good agreement at short times suggests that the CIL-based FFCF
will capture the high-frequency components of its FT rather
well. This is verified in Figure 3, where the FTs of the exact
and CIL-based FFCFs are shown on a semilog plot. The main
observation is that the high-frequency FT of the CIL-based
FFCF coincides with that of the exact FFCF. As is well-known,
a reliable evaluation of the extremely small FT of the FFCF at
the vibrational frequency of oxygen (1552.5 cm-1) is not feasible

in practice, due to numerical noise. In the case of Figure 3, a
reliable evaluation of the FT of the FFCF has been possible up
to a frequency of about 550 cm-1. However, the exponential
gap law phenomenology established at these lower frequencies
can be assumed to persist to much higher frequencies, such that
the value of the FT at the vibrational frequency of oxygen can
be obtained by linear extrapolation.40,41

It should be noted that the CIL strategy is similar in spirit to,
and was in fact inspired by, the instantaneous-pair approach to
VER, which was recently introduced by Stratt and co-work-
ers.119,120The latter was developed in the context of classical
mechanics, and is based on the assumption that high-frequency
VER is mediated by the motion of asingle, instantaneously
nearby, solvent molecule. This approach seems to suggest that
the computational cost may be further reduced by employing a
smaller cluster and more selective initial sampling. However,
in light of the already manageable cost of the CIL scheme as
described above, no attempt has been made in the current study
to further optimize the computational efficiency. Nevertheless,
it is likely that such an optimization will be useful when the
methodology is applied to more complex systems.

The above discussion suggests the following algorithm for
calculating the (approximate) quantum-mechanical FFCF, eq
39, in the case of neat liquid oxygen:

1. SampleQ0 with the probability density Prob(Q0) )
〈Q0|e-âĤb|Q0〉/Zb via a PIMD or a PIMC simulation. For the
results reported below, a PIMD simulation of 500 O2 molecules
in a cubical simulation cell with periodic boundary conditions,
at the temperature of 77 K and density of 22.64 nm-3 has been
used. Each oxygen atom has been represented by a chain
polymer consisting of 16 beads. Thermalization was imposed
by attaching a Nose-Hoover chain thermostat to each of the
beads, and the dynamics has been computed by using the
velocity Verlet algorithm.121 The sampling was performed by
choosing random beads from snapshots of the isomorphic liquid
of cyclic polymers.

2. Randomly select one of the 500 molecules and designate
it as the tagged molecule. Find the 29 molecules which are
closest to the tagged molecule and will form the cluster. Find
the next 60 closest molecules that will constitute the static cage
which prevents the cluster from falling apart.

3. Apply the LHA to the cluster of 30 “active” molecules,
and find the normal-mode frequencies,{Ω(k)}, and transforma-
tion matrix,{Tk,l}. Use these in order to sample the initial normal
mode momenta. It should be noted that the normal-mode
analysis and momenta sampling is performed for the cluster
molecules only, and therefore involve only 180 DOF. For the
results reported below, the Jacobi method has been used for
diagonalizing the Hessian matrix.122

Figure 1. Schematic view of the cluster-in-a-liquid strategy. The tagged
molecule (black) is in the center of a cluster which consists of the
molecules in its near vicinity (light gray). The molecules that belong
to the cluster are “active”, in the sense that they are allowed to move,
and the LHA-LSC-IVR analysis is performed on them. The rest of
the molecules that surround the cluster (dark gray) are frozen and form
a static cage that prevents the cluster from falling apart.

Figure 2. Exact (solid line) and CIL-based (dashed line) FFCFs, as
obtained from classical MD simulations of liquid oxygen at a
temperature and density of 77 K and 22.64 nm-3, respectively.

Figure 3. FTs of the exact (solid line) and CIL-based (dashed line)
FFCFs, given in terms of a semilog plot, as obtained from classical
MD simulations of liquid oxygen, at a temperature and density of 77
K and 22.64 nm-3, respectively.
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4. CalculateQt
(Cl) and Pt

(Cl) for the cluster molecules via a
classical MD simulation, and time correlateδF(Qt

(Cl),Qt
(Cl))

with δF(Q0,P0), DU(Q0,Pn,0) andDT(Q0,Pn,0) (corresponding to
the force on the tagged molecule). The velocity Verlet algorithm
with a time step of 4 fs has been used in the simulations reported
here.

5. Repeat steps 1-4 for many initial cluster-cage configura-
tions, and average the results in order to obtain the desired FFCF.

V. Results

In this section, we present results that were obtained by using
the semiclassical methodology outlined above for calculating
the FFCF in the case of neat liquid oxygen. All of the results
were obtained with the model potential described above, at a
temperature of 77 K and density of 22.64 nm-3. We note that
a classical calculation of the VER rate constant for neat liquid
oxygen under the same conditions has been recently reported
by Everitt et al.59

In Figure 4, we show, on a semilog plot, the FT of the LHA-
LSC-IVR FFCF, as obtained from either the full FFCF, its
real part or its imaginary part [for the exact FFCF,C̃(ω) )
4∫0

∞dt cos(ωt)CR(t)/(1 + e-âpω) ) -4∫0
∞ dt sin(ωt)CI(t)/(1 -

e-âpω); cf. eq 18]. As for the other model systems previously
considered, the difference between the predictions is found to
be rather small. Linear extrapolation to the frequency of oxygen
reveals that the best agreement with experiment is obtained when
the imaginary part is used. However, we believe that this
observation is incidental and that the FT obtained from the real
part actually provides the least approximate estimate (cf. paper
I for a more detailed discussion of this point). We would
therefore restrict ourselves to the FT obtained from the real part
in what follows.

In Figure 5, we compare the real part of the LHA-LSC-
IVR FFCF with the corresponding classical result. The initial
values of the LHA-LSC-IVR FFCF is seen to be significantly
larger than the corresponding classical prediction. This is
consistent with a similar observation made in paper I in the
case of a LJ breathing sphere model. The larger quantum-
mechanical force amplitude is a manifestation of the important
role played by delocalization. The effect of the latter is probably
enhanced in the FFCF due to the high sensitivity of the force
to displacements at the region of the repulsive wall.

In Figure 6, we compare the FT of the LHA-LSC-IVR
FFCF with the predictions obtained by using various QCFs. The
actual values of the FTs at the frequency of oxygen were
obtained by linear extrapolation, as discussed above. The

corresponding values ofk0r1 are given in Table 1. The LHA-
LSC-IVR result is larger than the experimental result by a
factor of 4. This should be compared to the much larger gap of
4 orders of magnitude that separates the experimental result from
the classical prediction (cf. Table 1). We therefore consider the
LHA-LSC-IVR prediction as being in very good quantitative
agreement with experiment. The level of agreement is also
comparable to that obtained via the best performing QCF (the
mixed harmonic-Schofield QCF). It should be emphasized
however that it is usually difficult to predict which, if any, QCF
will perform the best for a given system. This should be
contrasted with the LHA-LSC-IVR method presented herein,
where the quantum correction automatically adapts itself to the
system under study, and does not require any guess work. It
should also be noted that the residual deviation from the
experimental value may well be due to experimental errors and/
or inaccuracies in the potentials, whose development has been
largely based on fitting to bulk thermodynamic data.

The relative contributions of the potential and centrifugal
forces to the LSC-IVR FFCF are shown in Figure 7. Only the
diagonalFU-FU andFT-FT terms are shown (theFT-FU and
FU-FT cross terms are not explicitly shown and can be inferred
from the difference between the full FFCF and the sum of the
diagonal terms). As for the classical case, one finds that the
potential force is more dominant, although the contribution of
the centrifugal force is certainly not negligible. In fact the
relative weight of both terms is comparable to the classical case,
and both are seen to be enhanced by quantum effects in a similar
manner. The contributions of these diagonal terms to the FT of
the FFCF are shown in Figure 8. Although the contribution of
the potential force remain larger than that of the centrifugal force
as the frequency increases, which is consistent with the classical

Figure 4. Semilog plot of the FTs of the FFCF, as obtained from the
real part of (solid line), imaginary part of (dotted line), and full set of
(dashed-dotted) LHA-LSC-IVR-based FFCF. The calculations lead-
ing to these results employed the CIL strategy. Simulations were
performed on liquid oxygen, at a temperature and density of 77 K and
22.64 nm-3, respectively. Also shown are the experimentally determined
value of the FT at the vibrational frequency of oxygen (star), and linear
extrapolations of the computed FTs to this frequency.

Figure 5. Real part of the FFCF as obtained from LHA-LSC-IVR,
within the CIL approximation (solid line). Also shown is the fully
classical FFCF (dotted line). The calculations were performed on liquid
oxygen, at a temperature and density of 77 K and 22.64 nm-3,
respectively.

Figure 6. Semilog plot of the FT of the FFCF as obtained from LHA-
LSC-IVR (solid line), fully classical (dashed-dotted line), the
harmonic QCF (short dashed line), the mixed harmonic-Schofield QCF
(long dashed line), and Egelstaff QCF (dotted line). The results apply
to liquid oxygen, at a temperature and density of 77 K and 22.64 nm-3,
respectively. Also shown are the experimentally determined value of
the FT at the vibrational frequency of oxygen (star), and linear
extrapolations of the computed FTs to this frequency.
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behavior,43,59the actual difference between the two contributions
diminishes as the frequency increases, which is different from
what is observed classically.

The relative contributions of the classical term,δF(Q0,Pn,0)
) δFT(Pn,0) + δFU(Q0), and purely quantum mechanical
delocalized term,D(Q0,Pn,0) ) DT(Q0,Pn,0) + DU(Q0,Pn,0), to
the real part of the LSC-IVR FFCF, eq 39, is shown in Figure
9. As can be seen, the classical term appears to be dominant
when the FFCF is presented in the time domain. However, we
found that the delocalized term dominates as the focus shifts to
the high frequency FT of the FFCF, as can be seen in Figure
10. This observation is consistent with what we have seen in
other models (cf. paper I), and suggests that high-frequency VER
originates from a purely quantum-mechanical term which is not
accounted for in classical MD simulations.

VI. Conclusions

The ability of LSC-IVR to capture quantum effects over a
short period of time suggests that it is well suited for estimating
relatively short lived quantum-mechanical correlation functions
in condensed phase systems. The validity of this hypothesis has

been previously demonstrated in the calculation of reaction rate
constants, which depend on the short time dynamics of the flux-
flux correlation function.72,123VER rate constants can be given
in terms of the FT, at the vibrational frequency, of the quantum-
mechanical FFCF, and are known to deviate by orders of
magnitudes relative to the corresponding classical prediction.
In paper I, we proposed and tested an LSC-IVR-based method
for calculating the FFCF, and hence VER rate constants in
condensed phase systems. In the present paper, we have
extended this method to the case of molecular liquids. New
features include the incorporation of centrifugal forces, as well
as the computational tools necessary for calculating the FFCF
in a constrained system with many DOF. The resulting LHA-
LSC-IVR method was then applied to the challenging problem
of calculating the extremely slow and highly quantum-mechan-
ical VER rate constant in liquid oxygen. The result was found
to be in very good agreement with experiment, thereby providing
further support for the validity and feasibility of an LSC-IVR-
based approach to VER in liquid solutions.

The success of LSC-IVR should probably be attributed to
its ability to capture the correct short time behavior of the
quantum-mechanical FFCF, which in turn dominates its high-
frequency FT and hence the VER rate constant. In this respect,
LSC-IVR is ideally suited for the VER problem. The compu-
tational framework developed in the present paper also turn
LSC-IVR into a feasible method, which can be applied to
realistic models of molecular liquids. As such, it provides a very
attractive alternative to the common practice of multiplying the
classical VER rate constant by a rather ad hoc QCF. Future
applications to other molecular liquids, as well as the develop-
ment of more efficient computational tools are currently
underway, and these will be the subject of future publications.
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